

2019 Marking Scheme

Grade	Mark R	equired	% aandidat	% candidates achieving anada		
Awarded	(/ ₁₃₀)	%		es acme	eving grad	Je
A	90+	69.2%		33.8%		
В	77+	59.2%		26.3%		
С	64+	49.2%		22.2%		
D	57+	43.8%		7.3%		
No award	<57	<43.8%	10.4%			
Section:	Multiple	Choice	Extended Answe	r A	ssignment	
Average Mark:	21.0	/30	40.4	/70	19.2	/30

20)19 A	Adv	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	В	76	 A adsorption spectra formed by adsorption of energy as electrons are promoted B emission spectra are formed from the release of energy as electrons drop down C 310nm is a wavelength in the ultraviolet not visible region of EM Spectrum D 310nm is a wavelength in the ultraviolet not visible region of EM Spectrum
2	D	85	In gravimetric analysis, heating Na ₂ CO ₃ .10H ₂ O will release the 10 water molecules trapped in the structure so that just Na ₂ CO ₃ remains. The substance is heated, cooled in a desiccator and its mass measured. The process is repeated until the mass is constant.
3	С	37	 A adding sodium nitrate to magnesium ions does not produce a magnesium precipitate B adding silver(I) nitrate to magnesium ions does not produce a magnesium precipitate C sodium carbonate forms a magnesium carbonate precipitate with magnesium ion solution D silver(I) carbonate is insoluble so carbonate ions cannot precipitate with magnesium ions
4	A	90	 A Hund's Rule: electrons occupy degenerate orbitals singly with parallel spins before pairing B Pauli Exclusion Principle: no two electrons in an atom can have the same set of four quantum numbers C Aufbau Principle: electrons occupy orbitals in order of increasing energy D the energy of an electron in an atom is quantised into specific energy levels/electron shells
5	D	75	 ☑ A BeCl₂ is a linear molecule with 180° angles ☑ B BCl₃ is a trigonal planar molecule with 120° angles between bonds ☑ C CCl₄ is a tetrahedral molecule with 109.5° angles between bonds ☑ D PCl₅ is a trigonal pyramidal molecule with 90° (and 120°) angles between bonds
6	D	51	SpeciesFeFe²+Fe³+Electronic configuration1s² 2s² 2p6 3s² 2p6 3d6 4s²1s² 2s² 2p6 3s² 2p6 3d61s² 2s² 2p6 3s² 2p6 3d5■ A Fe²+ and Fe³+ both have three occupied energy levels (n=1, n=2 and n=3)■ B Fe²+ has four unpaired electrons in 3d and Fe³+ has five unpaired electrons in 3d■ C Fe²+ is higher in ECS than Fe³+. Fe³+ is better oxidising agent than reducing agent■ D Fe³+ more stable because Fe³+ had 5 unpaired electrons in half-filled d-subshell
7	В	71	 A Cr₂O₇²⁻ ions have Cr with an oxidation state of +6 B MnO₄⁻ ions have Mn with an oxidation state of +7 C VO²⁺ ions have V with an oxidation state of +4 D Sn⁴⁺ ions have Sn with an oxidation state of +4
8	D	60	 A Co-ordination number of the copper 4 as there are four bonds from ligand to Cu B Co-ordination number of the copper 4 as there are four bonds from ligand to Cu C The ligand shares four pairs of electrons with the one metal ion = tetradentate D Four bonds between ligand and central metal ion: co-ordination number equals 4 and is tetradentate
9	A	72	 A Decrease in temperature favours the forward exothermic reaction. This gives more products and increasing the numerator on top of the equilibrium constant calculation which increases the value of equilibrium constant. B Increase in temperature favours the reverse endothermic reaction. Lowers K value C Changes in pressure do not alter the equilibrium constant D Changes in pressure do not alter the equilibrium constant
10	С	72	EA The reaction is feasible when the value of ΔG is below zero B The reaction is only feasible when the value of ΔG is below zero (above 300K) C The value of ΔG is negative above 300K so reaction is feasible above 300K D The value of ΔG is positive below 300K so reaction is <u>not</u> feasible below 300K
11	С	89	$\Delta H^{\circ} = \Sigma \Delta H_{f}^{\circ}(\text{products}) - \Sigma \Delta H_{f}^{\circ}(\text{reactants})$ $= (2 \times 0) + (3 \times -242) - (1 \times -822) + (3 \times 0)$ $= (0 - 726) - (-822 + 0)$ $= -726 - (-822)$ $= +96 \text{ kJ mol}^{-1}$

			🗷 A Steam condensing into water gives off heat $\therefore \Delta H$ is negative
12	D	20	$\square B \Delta H$ is negative as heat is given off. ΔS is negative as molecules are more ordered
12	В	37	🗷 C Steam condensing into water gives off heat $\therefore \Delta H$ is negative
			ID Molecules are closer together and more ordered in water \therefore ΔS is negative
			Experiment Change Effect on Rate Order of reactant
10	٨	04	1+2 $[X] \times 2 \times 2 [X]^1$
13	A	80	1+2 [Y] x2 No effect [Y] ⁰
			Rate = k [X] ¹ [Y] ⁰ = k[X]
			rate = $k [A]^{1} [B]^{1}$ rate = $k [C]^{2}$
			rate rate
	•		$\therefore \mathbf{k} = \frac{[\mathbf{A}]^1 [\mathbf{B}]^1}{[\mathbf{C}]^2} \qquad \therefore \mathbf{k} = \frac{[\mathbf{C}]^2}{[\mathbf{C}]^2}$
14	В	15	mol $l^{-1} s^{-1}$ mol $l^{-1} s^{-1}$
			$= \frac{1}{\operatorname{mol} l^{-1} \times \operatorname{mol} l^{-1}} = \frac{1}{\operatorname{mol}^2 l^{-2}}$
			$=$ $ mo ^{-1}s^{-1}$ $=$ $ mo ^{-1}s^{-1}$
15	$\boldsymbol{\mathcal{C}}$	70	Bonds $2X C=C$ $2X C-C$ $IX C=N$ $2X C-O$ $3X C-H$ Sigma a bands 2 2 1 2 3
15	C	10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
			H Q
	•		H_{\sim} C_{\sim} C_{\sim}
16	A	89	C C OH
			A The right C in C=C double bond has 2 -H groups
47	~	10	\blacksquare B The right C in C=C double bond has 2 -CH ₃ groups \therefore no geometric isomerism
1/	C	49	☑C Both ends of C=C double bond have different groups ∴has geometric isomerism
			☑D The right C in C=C double bond has 2 -H groups ∴ no geometric isomerism
			C-C Structure: 3,4-dimethylhex-3-ene
18	$\boldsymbol{\mathcal{C}}$	80	Both ethyl groups are on same side of C=C double
10	C	00	bond so this is the CIS geometric isomer.
			KA Trimethylamine is a tertiary amine so no hydrogen bonding ∴lower boiling point
	_		■B I rimethylamine is a tertiary amine so no hydrogen bonding lower boiling point
19	D	59	INC Trimethylamine has no H-IN bonds so lacks any hydrogen bonding ∴less soluble
	U	07	trimethylamine nolecules are further apart and this lowers the boiling point
			The lack of N-H bonds lowers the solubility of trimethylamine in water.
	•		Lithium Aluminium Hydride is a reducing agent for:
20	В	/8	carboxylic acid
		• -	Ketone secondary alcohol
21	$\boldsymbol{\mathcal{C}}$	56	Step 2 Reduction: Decrease in the oxygen: hydrogen ratio as $-NO_2$ group is reduced to $-NH_2$ group
61	J	50	Step 3 Condensation: two molecules join together and small molecule removes where they join.
			нн пи
22	D	62	$H = C = C = N \xrightarrow{hydrolysis} H = C = C$
22	D	03	
	-		The heaviest m/z peak on a mass spectrum is the mass of the original
23	В	64	compound.
	-		$qfm C_3H_6O = (3x12)+(6x1)+(1x16) = 36+6+16 = 58q$

0.7 0.7 16 0.669 669 669 .00 1 not an adjacent ogen as it is	$ \begin{array}{c cccc} 80.0 & 9.3 \\ \hline 80.0 & 9.3 \\ \hline 12 & 1 \\ \hline = 6.67 & = 9.300 \\ \hline 6.667 & 9.300 \\ \hline 0.669 & 0.669 \\ \hline = 9.96 & 13.90 \\ \hline 10 & 14 \\ \end{array} $	% No. of moles (divide % by gfm) Mole ratio (divide through by smallest value) Round to Whole Number		90	A	24
0.7 16 0.669 .669 .669 .00 1 not an adjacent ogen as it is	$\begin{array}{c ccccc} 80.0 & 9.3 \\ \hline 80.0 & 9.3 \\ \hline 12 & 1 \\ \hline = 6.67 & = 9.300 \\ \hline 6.667 & 9.300 \\ \hline 0.669 & 0.669 \\ \hline = 9.96 & 13.90 \\ \hline 10 & 14 \\ \end{array}$	No. of moles (divide % by gfm) Mole ratio (divide through by smallest value) Round to Whole Number		90	A	24
16 0.669 669 669 .00 1 not an adjacent ogen as it is	$\begin{array}{c c} \hline 12 & \hline 1 \\ \hline = 6.67 & = 9.300 \\ \hline 6.667 & 9.300 \\ \hline 0.669 & 0.669 \\ \hline = 9.96 & 13.90 \\ \hline 10 & 14 \\ \end{array}$	No. of moles (divide % by gfm) Mole ratio (divide through by smallest value) Round to Whole Number		90	A	24
0.669 .669 .00 1 not an adjacent ogen as it is	$\begin{array}{c} = 6.67 & = 9.300 \\ \hline 6.667 & 9.300 \\ \hline 0.669 & 0.669 \\ = 9.96 & 13.90 \\ \hline 10 & 14 \end{array}$	(divide % by grm) Mole ratio (divide through by smallest value) Round to Whole Number		90	A	24
.669 .00 1 not an adjacent ogen as it is	6.667 9.300 0.669 0.669 = 9.96 13.90 10 14	Mole ratio (divide through by smallest value) Round to Whole Number				1
.00 1 not an adjacent ogen as it is	= 9.96 13.90 10 14	(divide through by smallest value)				
not an adjacent ogen as it is	10 14	Round to Whole Number				
not an adjacent ogen as it is						
not an adjacent ogen as it is						
ogen as it is 🔰	Thi	⁺ ├ ─── ≻ ├ └ └ `	1⁵t adjacent hydrogen			
to same carbon			2 nd adjacent			
	-0-H	_ →H <i>—C—</i> C−	hydrogen			
			3 rd adjacent hydrogen			
			, ,	50	C	25
				50	C	25
et quintet	riplet qu	Doublet T	singlet			
varogens 4 adjacent nyarogens ulate a nechanse	a necentor and s	ists as both bind with	no adjacent nyarogens 1			
nd produces a response	mulates recentor	is an agonist as it st	R Bunrenorphine			
ls to make a response	lates the nerves	an agonist as it stim	C Pramipexole is	66	A	26
ls to make a response	ulates the nerves	an agonist as it stim	☑D Pramipexole is			
	s = 60litres air	es air ∴ 10minute	1 minute = 6litre			
		ma per 1litre air	0.03ppm = 0.03r			
e	hydrogen sulp	← → 0.03ma	1 litre of air	80	Ν	27
$e \times \frac{60}{1}$	hydrogen sulp	← → 0.03mg	60 litres of air	00	U	L/
	nyai ogen suip	- 1 8ma				
ferent polarities/size	es chemicale with	- 1.0My	XA Thin lover chr			
vithout reactant escape	chemicals to real	reflux allows volatile	B Heating under			
	be extracted fro	ion allows chemical to	☑C Recrystallisation	87	C	28
mpurities due to			, solubility in a s	07		20
mpurities due to		second solvent				
mpurities due to oints	h different boilin	second solvent parates chemicals wit	🗷 D Distillation sep			
mpurities due to oints	h different boilin e top layer	second solvent parates chemicals wit dense so should be th	D Distillation sep A water is less of			
mpurities due to oints $V - [X]_{dichloromethane}$	h different boilin e top layer e top layer	second solvent parates chemicals wit dense so should be th dense so should be th	ED Distillation sep EA water is less o EB water is less d	70	2	20
mpurities due to <u>oints</u> $K = \frac{[X]_{dichloromethane}}{[X]_{water}}$	<u>h different boilin</u> e top layer e top layer	second solvent parates chemicals wit dense so should be th dense so should be th	 ☑ D Distillation sep ☑ A water is less of ☑ B water is less d ☑ C K = ²/₈ = 0.25 	70	D	29
mpurities due to <u>oints</u> $K = \frac{[X]_{dichloromethane}}{[X]_{water}}$	h different boilin e top layer e top layer	second solvent parates chemicals wit dense so should be th dense so should be th	 ☑ D Distillation sep ☑ A water is less of ☑ B water is less of ☑ C K = ²/8 = 0.25 ☑ D K = ⁸/2 = 4 	70	D	29
mpurities due to <u>oints</u> $K = \frac{[X]_{dichloromethane}}{[X]_{water}}$ Lions in milk	<u>h different boilin</u> e top layer e top layer calculate the calc	second solvent parates chemicals wit dense so should be th dense so should be th ric analysis is used to	 ☑ D Distillation sep ☑ A water is less of ☑ B water is less d ☑ C K = ²/₈ = 0.25 ☑ D K = ⁸/₂ = 4 ☑ A Complexometr 	70	D	29
mpurities due to <u>oints</u> $K = \frac{[X]_{dichloromethane}}{[X]_{water}}$ i ions in milk is in sea water	h different boilin e top layer e top layer calculate the calculate the chloride	second solvent parates chemicals wit dense so should be th dense so should be th ric analysis is used to nalysis is used to calc	 ☑ D Distillation sep ☑ A water is less of ☑ B water is less of ☑ C K = ²/₈ = 0.25 ☑ D K = ⁸/₂ = 4 ☑ A Complexometric an ☑ B Gravimetric an 	70 52	D	29 30
ret ydrogens <u>4 adjacent hydro</u> ulate a response nd produces a response is to make a response is to make a response le <u>de x ⁶⁰/1</u> ferent polarities/si vithout reactant esc	riplet a receptor and s mulates receptor ulates the nerves ulates the nerves s = 60litres air hydrogen sulp hydrogen sulp hydrogen sulp	Doublet Doublet T adjacent hydrogen 2 adjac 2 adjac	hydrogen singlet no adjacent hydrogens Market Market <t< th=""><th>58 66 80 87</th><th>C A D C</th><th>25 26 27 28</th></t<>	58 66 80 87	C A D C	25 26 27 28

201	2019 Adv Higher Chemistry Marking Scheme			
Long Qu	Answer	Reasoning		
1a	Any <u>one</u> of the 2p electrons circled	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
1b	103	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $= 127 - 298 \times \frac{79.4}{1000}$ $= 127 - 23.7$ $= 103.3 \text{ kJ mol}^{-1}$		
		$\Delta G^{\circ} = -2.30 \times R \times T \times \log_{10} K$		
	0.00 105	$\log_{10} K = \frac{\Delta G^{\circ}}{-2.30 \times R \times T}$		
lc	3.20 ×10-5	$\log_{10}K = \frac{25.6}{2.30 \times 8.31 \times 10^{-3} \times 208}$		
		$-2.30 \times 0.31 \times 10 \times 290$		
		$K = 10^{-4.49} = 3.20 \times 10^{-5}$		
	Number of moles of	Rate determining step is the slowest step in reaction mechanism. The number of moles of		
2a	reactant involved in the	each reactant in rate determining step decides the order for each reactant 0 moles of reactant in RDS 1 mole of reactant in RDS 2 moles of reactant in RDS		
	rate determining step	Zero Order1st Order2nd Order1 mol of H2O2 in rate determining step :: order [H2O2]1		
2b(i)	2 nd order	1 mol of I^- in rate determining step \therefore order $[I^-]^1$ Overall order = 1 + 1 = 2		
2b(ii)	Rate = k [H2O2] [I ⁻]	Rate = k [H ₂ O ₂] ¹ × [I ⁻] ¹ = k [H ₂ O ₂] [I ⁻]		
20	H ₂ O ₂ + 2I ⁻ + 2H ₃ O ⁺	Step 1 H_2O_2 + $I^ \rightarrow$ IO^- + H_2O Step 2 IO^- + H_3O^+ \rightarrow HEQ + H_2O		
	I ₂ + 4H ₂ O	Step 3 H_{IQ} + H_3O^+ + $I^- \rightarrow I_2$ + $2H_2O$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
2.	Anguan ta inaluday	Image: Mark Schild transferred to the 50cm3 flask Correct use of pipette An accurate method of measuring 5cm³ need to		
30	Answer to include:	2 nd Mark Making Up to line with deionised water The volumetric/standard flask must be filled to the line for accuracy		
3b(i)	Deionised water	The control experiment has a cuvette containing deionised water and the		
3b(ii)	Unknown's Absorbance must not be outwith calibration range	The calibration curve is only applicable to concentrations between the highest and lowest concentrations used in the calibration curve. Diluting a sample can bring a more concentrated unknown into the usable range of the calibration curve. It is unknown what happens to concentrations beyond the calibration range with any certainty.		
3b(iii)	71%	Absorbance (diluted sample) = 0.34 ∴ concentration of Cu ²⁺ = 0.032 mol l ⁻¹ ∴ concentration of Cu ²⁺ in original sample = 0.064 mol l ⁻¹ no. of mol in 250cm ³ = volume × concentration = 0.25litres × 0.064 mol l ⁻¹ = 0.016mol mass = no. of mol × gfm = 0.016 × 63.5 = 1.016g % mass = $\frac{\text{mass of } Cu}{\text{mass of screw}}$ × 100 = $\frac{1.016}{1.43}$ × 100 = 71.0%		

	Proton on H+	Acid	Do	onates H ⁺	-
4a (i)	Proton or Pi	Base Conjugate A	Acid Formed who	ccepts H [*] en Rase accents H [*]	-
	acceptor	Conjugate F	ase Formed w	hen Acid loses H	
4 a(ii)	Acid H2O2 Conjugate HO2 ⁻ or Acid H3O ⁺	$H_2O_2 + H_2O =$ Acid Base Donates H' Accepts H' $H_3O^+ + HO_2^- =$	H3C Conjugata Formed when Bas or H2C	D ⁺ + H e Acid Conjug e accepts H ⁺ Formed whe D ₂ + H	lO2 ⁻ pate Base en Acid loses H [*] 12O
	Conjugate Base H2O	Acid Base	Conjugate	e Acid Conjug	ate Base
4b	One answer from:	B(OH) ₃ accepts a pair of non- electrons and water donates a p bonding electrons	bonding B(OH) ₃ a air of non- non- bor fro	ccepts a pair of Wat ding electrons of w water. elec	er donates a pair f non- bonding ctrons to B(OH) ₃
4 c(i)	Increasing number of chlorine increases strength of acid	Increasing the number The higher the value of (NB The higher the value of pKo the weak	r of chlorines i of Ka the stron ker the acid)	ncreases the vo ger the acid	alue of Ka.
4c(ii) Part A	0.08	gfm CH ₂ COOH = (2x12)+(n o. of mo c oncentration = -	3×1)+(2×16)+(1×3 ol = <u>mass</u> = <u>1</u> gfm = <u>9</u> <u>no. of mol</u> = <u>(</u> volume = (35.5) = 24+3+32+ <u>89</u> 4.5 = 0.02mol <u>0.02 mol</u> 0.25 litres = 0.08	35.5 = 94.5g mol l ⁻¹
4c(ii) Part B	2.0	pH = pH = pH = -½ × pH = - pH = pH =	¹ / ₂ pK _a ¹ / ₂ × -log ₁₀ K _a ¹ / ₂ log ₁₀ (1.3×10 ⁻³) ¹ / ₂ × (-2.89) 1.44 1.99	$\begin{array}{rcl} - & \frac{1}{2}\log c \\ - & \frac{1}{2}\log_{10}c \\ - & \frac{1}{2}\log_{10}(0.08) \\ - & \frac{1}{2}\times(-1.10) \\ - & (-0.55) \end{array}$	8))
		3 mark answer	2 mark answ	er 1 mar	k answer
4d	Open Question to include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonab</u> understanding of the cher involved, making some statement(s) which are re the situation, showing tha problem is understood.	e Demonstrates of understanding of involved. The co- some statemen t the t the relevant to the that at least a chemistry with understood.	a <u>linited</u> of the chemistry andidate has made t(s) which are situation, showing little of the in the problem is
4d 5a	Open Question to include: Heat or high temperature	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Electrons become excited in s electron to a higher energy le corresponding to the exact en electron drops down from to	Demonstrates a <u>reasonab</u> understanding of the cher involved, making some statement(s) which are re the situation, showing tha problem is understood. Sodium by absorbing evel. Light of specif mergy difference be the lower energy le	e Demonstrates of understanding involved. The co- some statemen relevant to the the that at least a chemistry with understood. g heat energy which ic wavelength is emi- etween the upper en- vel the electron goes	a <u>limited</u> of the chemistry andidate has made tt(s) which are estituation, showing little of the in the problem is promotes an tted ergy level the s in to.
4d 5a 5b(i)	Open Question to include: Heat or high temperature Hexaaquazinc(II)	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Electrons become excited in se electron to a higher energy lec corresponding to the exact en- electron drops down from to Hexaqua Chloride NH ₃ ammine CO carbonyl Ist Mark	Demonstrates a <u>reasonab</u> understanding of the cher involved, making some statement(s) which are re the situation, showing tha problem is understood. Sodium by absorbing evel. Light of specific the lower energy le the lower energy le Cl Charge on e metal ion pands include: Centration Chi Cyanido O_2^- nitrito e.g. Cup	Demonstrates of understanding of involved. The co- some statemen relevant to the that at least a chemistry with understood. The complex is s keep their name ive Complex: s end in ATE 2 nd Mark Demonstrates of understanding of involved. The co- some statemen relevant to the that at least a chemistry with understood. S deat energy which is emi- the electron goes Char iou understood. S deat energy which is emi- iou understood. S deat energy which is end in ATE understood. S deat energy which is end in ATE S deat energy which S deat energy which is end in ATE S deat energy which S deat energy whi	a <u>limited</u> of the chemistry andidate has made at(s) which are estituation, showing little of the in the problem is promotes an tted ergy level the s in to. b) 6] ²⁺ rge: arge of central n is converted into roman merals and put in brackets

5 c(i)	2.04×10 ⁻¹⁶ J	$E = h \times f$ $E = 6.63 \times 10^{-34} \text{ J s} \times 3.08 \times 10^{17} \text{ s}^{-1}$ $E = 2.04 \times 10^{-16} \text{ J}$ NB: The question does not require you to multiple by L (6.02 \times 10^{23}) as the units required are J not J mol ⁻¹ or kJ mol ⁻¹		
5c(ii)	19	$1 J 6.24 \times 10^{18} \text{ eV}$ $2.04 \times 10^{-16} J 6.24 \times 10^{18} \text{ eV} \times 2.04 \times 10^{-16} /_1$ $= 1273 \text{ eV}$ Binding Energy $electromagnetic radiation 6electron emitted$ $E_b e E - E_k$ $E_b e 1273 \text{ eV} - 1254 \text{ eV}$ $E_b e 19 \text{ eV}$		
6а	6.4	Total Dichromate in flask: no. of mol = volume x concentration = 0.025litres x 0.010 mol l ⁻¹ = 2.5x10 ⁻⁴ mol Dichromate left at end of reaction: no. of mol = 1.65x10 ⁻⁴ mol (in question) Dichromate which reacted with ethanol: no. of mol = 2.5×10^{-4} mol - 1.65×10^{-4} mol = 8.5×10^{-5} mol $3C_2H_5OH + 2Cr_2O_7^{2-} + 16H^+ \longrightarrow 3CH_3COOH + 4Cr^{3+} + 11H_2$ 3mol 2mol 1.28×10^{-4} mol 8.5×10^{-5} mol $1cm^3$ diluted vodka \checkmark 1.28×10^{-4} mol $1000cm^3$ diluted vodka \checkmark 1.28×10^{-4} mol x $1000/1$ = 0.128mol As $1000cm^3$ diluted vodka was made from $20.0cm^3$ of vodka $\therefore 20cm^3$ undiluted vodka \bigstar 0.128 mol		
6b	To ensure all ethanol is reacted	This experiment is a back titration. An excess of acidified potassium dichromate is added to ethanol solution and all the ethanol will react with acidified potassium dichromate solution and the left over acidified potassium dichromate can be determined by volumetric analysis.		
6c	Impurities in vodka reacting with dichromate	Other chemicals in the vodka may be able to react with acidified dichromate (a powerful oxidising agent).		
6d	Use standard solution of ethanol	A standard solution of ethanol could be used as a control to measure the experimentally-determined value of this ethanol solution against the known value of the standard solution.		
7α	Under suction/vacuum	A Buchner funnel and suction pump is used to draw the filtrate through the filter paper in the Buchner funnel quicker than gravity alone.		
7b(i)	End on overlap of two atomic orbitals	A sigma bond is formed by the end on overlap of two orbitals. A pi bond is formed by side overlap of two unhybridized p orbitals		
7b(ii)	Mixing an s atomic orbital with two p atomic orbitals	Type of HybridisationSp3Sp2SpDescriptionOne s and three p orbitals mixOne s and two p orbitals mixOne s and one p orbitals mix		

		1 st Mark		2	2 nd Mark		
7c	Answer to include:	Electrons promoted/move		Blue/green	Blue/green light is absorbed		
10		from HOMO to L	UMO	Complementary c	or alour to red absorbed		
			Forms		Dissolves of	lizarin	
740	One enquier from	Similar polarities or	hydroger	n Does not	Volatile or but not o	other	
7 Q(I)	One unswer prom.	similar intermolecular forces	bonds wit	h alizarin eva	point or substan	ces	
		1st Mark	alizarin	2nd A	(in the r	00T)	
7d (ii)	Answer to include:	IR makes bonds	Diff	erent bonds/funct	ional groups absorb at		
Part A		vibrate/bend/stretch	differen	t wavenumber/wav	elength/frequency/ene	.rgy	
		From page 14 of data booklet:	T				
7d (ii)	One or both -OH	3570-3200	Alcoho	of compound .	utra-rea Absorption aue udroaen bonded 0 - H stre	to 2tch	
Part B	groups circled	The -OH hydroxyl group can be described as phenols as they are attached					
		to a benzene ring.		•	•		
7 d(ii)	2.0(1 0-6	1	_	1 _ 20	(10- ⁴	0 -6	
Part C (I)	2.96X10 °M	Wavelength = Wavenum	per = :	$3395 \text{ cm}^{-1} = 2.9$	$6X10^{\circ} \text{ cm} = 2.96X10^{\circ}$	J°m	
		F= Lxhxc	6.02×10	²³ mol ⁻¹ x 6.63x10 ⁻³	³⁴ J s x 3x10 ⁸ m s ⁻¹		
7d (ii)	40.65kT mol ⁻¹	λ		2.96×10 ⁻⁶	m		
Part C (II)		=	: 40651 J	mol ⁻¹			
		=	= 40.65 kJ mol ⁻¹				
		3 mark answer	2 r	nark answer	1 mark answer	•	
	Open Question to include:	Demonstrates a <u>good</u> understanding of the chemistry	Demonstro understan	ates a <u>reasonable</u> ding of the chemistry	Demonstrates a <u>limited</u> understanding of the chemis	try	
8		involved. A good comprehension of the chemistry has provided in a	involved, n statement	naking some (s) which are relevant to	involved. The candidate has r some statement(s) which are	nade	
Ū		logically correct, including a	the situat	ion, showing that the	relevant to the situation, sho	owing	
		involved and the application of	problem is	understood.	chemistry within the problem	n is	
	Fither circle on diggram:	These to respond to the problem.			understood.		
		A chiral carbon has four	differen	t chemical group	s attached to a centi	ral	
Qar		carbon. Both circled carl	oons have	e four bond but c	lue to being skeletal		
9U (1)		formula diagrams the 4t	h bond (a	C-H bond) being	the 4 th different g	roup	
		attached to the central of	carbon is	not drawn as it	is a C-H bond.		
		Non-superimposable Mir	ror Tmages	Non-sun	erimposable Mirror Tmage	4	
		Images shown are direct mi	rror images	s of The following	are optical isomers as Gro	oups W	
		each other and are therefo	re are opti	cal and X are in	the same position but Gro	ups Y	
		N	W				
	Non-superimposable		Ĭ		v		
90 (II)	mirror images						
	_	Cunz	C	C	un - Cu	ь.)/	
		x Z'		~X X	X_X	"у	
						7	
		The long nein on the nein	of the N	l in NH- in mucha	nhilicly attracted to		
		δ+ on the C of the polar	C-Br hone	n in infig is flucted	princip at tracted to	me	
9h (i)	(nucleophilic)	The NH3 is added onto t	he carbo	 n as the Br atom	leaves as a Br ⁻ ion.		
	substitution	An H in the -NH $_3^+$ group	then leav	ves as an H⁺ ion le	eaving a -NH2 amine a	group	
		attached to the carbon the Br previously was attached to.					

9b(ii)	7.58g	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
10a	Ether	Ethers have a carbon-oxygen-carbon group as their functional group. Be careful not to confuse a C-O-C group with an ester group which also has a carbonyl C=O group in one end.
10b(i)	One from:	
10b(ii)	2-methoxy-2-methylpropane	$H_{3}C \xrightarrow{\boldsymbol{\Theta}} C \xrightarrow{\boldsymbol{\Theta}} O \xrightarrow{\boldsymbol{\Theta}} CH_{3}$ $H_{3}C \xrightarrow{\boldsymbol{\Theta}} C \xrightarrow{\boldsymbol{\Theta}} O \xrightarrow{\boldsymbol{\Theta}} CH_{3}$ $Methoxy sidegroup on C_{2} of main chain \qquad \mathbf{\Theta} CH_{3}$
10c(i)	methanol	Group 1 metals react with alcohols to produce alkoxides and hydrogen: sodium + methanol → sodium methoxide + hydrogen 2Na + 2CH3OH → 2Na ⁺ CH3O ⁻ + H2
10c(ii)	<u>1st Mark</u> Correct Carbocation intermediate 2 nd Mark	$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CI \xrightarrow{Step 1} CH_{3} \xrightarrow{Carbocation} CH_{3}$ $CH_{3} \xrightarrow{C} CI \xrightarrow{Step 1} CH_{3} \xrightarrow{C} CH_{3}$ $CH_{3} \xrightarrow{C} CH_{3}$ $CH_{3} \xrightarrow{C} CH_{3}$
	Correct use of <u>both</u> curly arrows	$CH_{3} - C^{+} - OCH_{3} \xrightarrow{\text{Step 2}} CH_{3} - C - O - CH_{3}$ $CH_{3} - OCH_{3} \xrightarrow{\text{Step 2}} CH_{3} - C - O - CH_{3}$ $CH_{3} - C - O - CH_{3}$
10c(iii)	One answer from:	Formation of stable Steric hindrance of three methyl -CH ₃ groups (tertiary) carbocation prevents nucleophilic attack
10d	Any one from:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
10e	One line at 1.5-0.9 with relative intensity 9	The peak drawn is 3.6-3.7 and a relative intensity of 3 ∴ peak caused -O-CH ₃ group (3xH = relative intensity 3) Other Peak must contain tertiary -C(CH ₃) group ∴ Line at chemical shift 1.5-0.9 for R ₃ C- from table ∴ Relative intensity of 9 as there are 9 H atoms in group.